The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

A Heteroleptic Ferrous Complex with Mesoionic Bis(1,2,3-triazol-5-ylidene) Ligands: Taming the MLCT Excited State of Iron(II).

Author

Summary, in English

Strongly σ-donating N-heterocyclic carbenes (NHCs) have revived research interest in the catalytic chemistry of iron, and are now also starting to bring the photochemistry and photophysics of this abundant element into a new era. In this work, The efficient synthesis of a heteroleptic Fe(II) complex (1) is based on sequentially furnishing the Fe(II) center with the benchmark 2,2'-bipyridine (bpy) ligand and the more strongly σ-donating mesoionic ligand, 4,4'-bis(1,2,3-triazol-5-ylidene) (btz). Complex 1 was comprehensively characterized by electrochemistry, static and ultrafast spectroscopy, and quantum chemical calculations and compared to [Fe(bpy)3 ](PF6 )2 and (TBA)2 [Fe(bpy)(CN)4 ]. Heteroleptic complex 1 extends the absorption spectrum towards longer wavelengths compared to a previously synthesized homoleptic Fe(II) NHC complex. The combination of the mesoionic nature of btz and the heteroleptic structure effectively destabilizes the metal-centered (MC) states relative to the triplet metal-to-ligand charge transfer ((3) MLCT) state in 1, rendering it a lifetime of 13 ps, the longest to date of a photochemically stable Fe(II) complex. Deactivation of the (3) MLCT state is proposed to proceed via the (3) MC state that strongly couples with the singlet ground state.

Publishing year

2015

Language

English

Pages

3628-3639

Publication/Series

Chemistry: A European Journal

Volume

21

Issue

9

Document type

Journal article

Publisher

Wiley-Blackwell

Topic

  • Theoretical Chemistry
  • Chemical Sciences
  • Atom and Molecular Physics and Optics

Status

Published

ISBN/ISSN/Other

  • ISSN: 1521-3765