The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Calculation of turbulent fluid flow and heat transfer in ducts by a full Reynolds stress model

Author

Summary, in English

A computational method has been developed to predict the turbulent Reynolds stresses and turbulent heat fluxes in ducts by different turbulence models. The turbulent Reynolds stresses and other turbulent flow quantities are predicted with a full Reynolds stress model (RSM). The turbulent heat fluxes are modelled by a SED concept, the GGDH and the WET methods. Two wall functions are used, one for the velocity field and one for the temperature field. All the models are implemented for an arbitrary three-dimensional channel. Fully developed condition is achieved by imposing cyclic boundary conditions in the main flow direction. The numerical approach is based on the finite volume technique with a non-staggered grid arrangement. The pressure-velocity coupling is handled by using the SIMPLEC-algorithm.. The convective terms are treated by the van Leer scheme while the diffusive terms are handled by the central-difference scheme. The hybrid scheme is used for solving the e equation. The secondary flow generation using the RSM model is compared with a non-linear k-epsilon model (non-linear eddy viscosity model). The overall comparison between the models is presented in terms of the friction factor and Nusselt number. Copyright (C) 2003 John Wiley Sons, Ltd.

Department/s

Publishing year

2003

Language

English

Pages

147-162

Publication/Series

International Journal for Numerical Methods in Fluids

Volume

42

Issue

2

Document type

Journal article

Publisher

John Wiley & Sons Inc.

Topic

  • Energy Engineering

Keywords

  • turbulent
  • flow
  • non-linear k-epsilon model
  • Reynolds stress model
  • duct flow

Status

Published

ISBN/ISSN/Other

  • ISSN: 1097-0363