The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Influence of hydrogen content on fracture toughness of CWSR Zr-2.5Nb pressure tube alloy

Author

Summary, in English

In this work, influence of hydrogen and temperature on the fracture toughness parameters of unirradiated, cold worked and stress relieved (CWSR) Zr-2.5Nb pressure tube alloys used in Indian Pressurized Heavy Water Reactor is reported. The fracture toughness tests were carried out using 17 mm width curved compact tension specimens machined from gaseously hydrogen charged tube-sections. Metallography of the samples revealed that hydrides were predominantly oriented along axial-circumferential plane of the tube. Fracture toughness tests were carried out in the temperature range of 30-300 degrees C as per ASTM standard E-1820-06, with the crack length measured using direct current potential drop (DCPD) technique. The fracture toughness parameters (J(Q), J(Max) and dJ/da), were determined. The critical crack length (CCL) for catastrophic failure was determined using a numerical method. It was observed that for a given test temperature, the fracture toughness parameters representing crack initiation (J(Q)) and crack propagation (J(Max), and dJ/da) is practically unaffected by hydrogen content. Also, for given hydrogen content, all the aforementioned fracture toughness parameters increased with temperature to a saturation value. (c) 2012 Elsevier B.V. All rights reserved.

Publishing year

2013

Language

English

Pages

87-93

Publication/Series

Journal of Nuclear Materials

Volume

432

Issue

1-3

Document type

Journal article

Publisher

Elsevier

Topic

  • Materials Engineering
  • Mechanical Engineering

Status

Published

ISBN/ISSN/Other

  • ISSN: 0022-3115