The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Theoretical oscillator strengths and hyperfine structure in HgII

Author

Summary, in English

We present a theoretical model ion for Hg II, including oscillator strengths and hyperfine structure constants for a large number of transitions and levels. Different computational models have been used, depending on the observability of the lines and their importance in spectral synthesis of stellar atmospheres. For the resonance lines, we use highly systematic, accurate, and fully relativistic multiconfiguration Dirac-Fock methods. These methods are well suited to an accurate treatment of both the relativistic problem and the strong correlation effects in this ion. The predicted gf-values are probably accurate to within a few percent. A larger number of transitions are treated with a more flexible, but less accurate, version of the method. This is based on the idea of crosswise optimization to represent a number of states in the same calculation. The results are used in stellar atmosphere models, assuming local thermodynamic equilibrium (LTE), where a line-by-line investigation is important. A larger set of levels are treated with semiempirical methods, for use in large scale non-LTE calculations. The lower accuracy of these are well-suited to a more statistical treatment of the structure of the ion. We discuss the importance of a correct treatment of core-valence correlation and relativistic effects for predicting accurate oscillator strengths. These tend to reduce their values by as much as a factor of 2 for the resonance line.

Publishing year

1999

Language

English

Pages

524-534

Publication/Series

Astrophysical Journal

Volume

513

Issue

1

Document type

Journal article

Publisher

American Astronomical Society

Topic

  • Physical Sciences

Keywords

  • atomic data
  • relativity

Status

Published

ISBN/ISSN/Other

  • ISSN: 0004-637X