The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Transport of a hyaluronan-binding protein in brain tissue

Author

  • Joachim Kappler
  • Oliver Hegener
  • Stephan L. Baader
  • Sebastian Franken
  • Volkmar Gieselmann
  • Hanns Haeberlein
  • Uwe Rauch

Summary, in English

Hyaluronan is an unsulfated linear glycosaminoglycan with the ability to nucleate extracellular matrices by the formation of aggregates with lecticans. These matrices are essential during development of the central nervous system. In the prospective white matter of the developing brain hyaluronan is organized into fiber-like structures according to confocal microscopy of fixed slices which may guide the migration of neural precursor cells [Baier, C., S.L Baader, J. Jankowski, V. Gieselmann, K. Schilling, U. Rauch, and J. Kappler. 2007. Hyaluronan is organized into fiber-like structures along migratory pathways in the developing mouse cerebellum. Matrix Biol. 26: 348-58]. By using plasmon surface resonance, microinjection into brain slices and fluorescence correlation spectroscopy, we show that the brain-specific lecticans bind to, but also dissociate rather rapidly from hyaluronan. After microinjection into native cerebellar slices a GFP-tagged hyaluronan-binding neurocan fragment was enriched at binding sites in the prospective white matter, which had a directional orientation and formed local stationary concentration gradients in areas where binding sites are abundant. Fluorescence correlation spectroscopy measurements at fixed brain slices revealed that fiber-bound neurocan-GFP was mobile with Dfiber(neurocan-GFP) = 4 x 10(-10) cm(2)/s. Therefore, we propose that hyaluronan-rich fibers in the prospective white matter of the developing mouse cerebellum can guide the diffusion of lecticans. Since lecticans bind a variety of growth and mobility factors, their guided diffusion may contribute to the transport of these polypeptides and to the formation of concentration gradients. This mechanism could serve to encode positional information during development. (C) 2009 Elsevier B.V. All rights reserved.

Publishing year

2009

Language

English

Pages

396-405

Publication/Series

Matrix Biology

Volume

28

Issue

7

Document type

Journal article

Publisher

Elsevier

Topic

  • Cell and Molecular Biology

Keywords

  • diffusion
  • Guided
  • Neurocan
  • Lectican
  • Extracellular matrix
  • Brain development

Status

Published

Research group

  • Vessel Wall Biology

ISBN/ISSN/Other

  • ISSN: 1569-1802