The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Photofragmentation laser-induced fluorescence imaging in premixed flames

Author

Summary, in English

Two-dimensional measurements of primarily hydroperoxyl radicals (HO2) are, for the first time, demonstrated in flames. The measurements are performed in different Bunsen-type premixed flames (H-2/O-2. CH4/O-2, and CH4/air) using photofragmentation laser-induced fluorescence (PF-LIF). Photofragmentation is done by laser radiation at 266 nm, and the generated OH photofragments are probed through fluorescence induced by a laser tuned to the Q(1)(5) transition at 282.75 nm. The signal due to naturally occurring OH radicals, recorded by having the photolysis laser blocked, is subtracted, providing an image that reflects the concentration of OH fragments generated by photolysis, and hence the presence of primarily HO2, but also smaller contributions from H2O2 and, for the methane flames, CH3O2. For the methane flames the measured radial profiles of OH photofragments and natural OH agree well with corresponding profiles calculated for laminar, one-dimensional, premixed flames using CHEMKIN-II with the Konnov detailed C/H/N/O reaction mechanism. An interfering signal contribution is observed in the product zone of the methane flames. It is concluded that the major source for the interference is most likely hot CO2, from which 0 atoms are produced by photolysis, and OH is rapidly formed as the O atoms react with H2O and H-2. This conclusion is supported by the fact that the interference is absent for the hydrogen flame, but appears when CO2 is seeded into the flame. Another strong indication is that the Konnov mechanism predicts a similar buildup of OH after photolysis. (C) 2011 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Department/s

Publishing year

2011

Language

English

Pages

1908-1919

Publication/Series

Combustion and Flame

Volume

158

Issue

10

Document type

Journal article

Publisher

Elsevier

Topic

  • Atom and Molecular Physics and Optics

Keywords

  • Combustion diagnostics
  • Photofragmentation
  • Laser-induced fluorescence
  • Hydrogen peroxide
  • Hydroperoxyl radical
  • Methyl peroxy radical

Status

Published

ISBN/ISSN/Other

  • ISSN: 0010-2180