The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Coevolution of RANTES sensitivity and mode of CCR5 receptor use by human immunodeficiency virus type 1 of the R5 phenotype.

Author

Summary, in English

The evolution of human immunodeficiency virus type 1 (HIV-1) coreceptor use has been described as the acquisition of CXCR4 use linked to accelerated disease progression. However, CXCR4-using virus can be isolated only from approximately one-half of individuals with progressive HIV-1 disease. The other half continue to yield only CCR5-using viruses (R5 phenotype) throughout the course of disease. In the present work, the use of receptor chimeras between CCR5 and CXCR4 allowed us to study the evolution of HIV-1 with the R5 phenotype, which was not revealed by studies of wild-type coreceptor use. All together, 246 isolates (173 with the R5 phenotype) from 31 individuals were tested for their ability to infect cells through receptor chimeras. R5narrow virus was able to use only wild-type CCR5, whereas R5broad(1) to R5broad(3) viruses were able to use one to three chimeric receptors, respectively. Broad use of chimeric receptors was interpreted as an increased flexibility in the mode of receptor use. R5broad isolates showed higher infectivity in cells expressing wild-type CCR5 than R5narrow isolates. Also, the increased flexibility of R5broad isolates was concomitant with a lower sensitivity to inhibition by the CC chemokine RANTES. Our results indicate a close relationship between HIV-1 phenotypic changes and the pathogenic process, since the mode and efficiency of CCR5 use as well as the decrease in the RANTES sensitivities of isolated viruses are significantly correlated with CD4+-T-cell decline in a patient. One possible explanation is that ligand competition at the CCR5 receptor or changed CCR5 availability may shape the outcome of HIV-1 infection.

Department/s

Publishing year

2004

Language

English

Pages

11807-11815

Publication/Series

Journal of Virology

Volume

78

Issue

21

Document type

Journal article

Publisher

American Society for Microbiology

Topic

  • Microbiology in the medical area

Status

Published

Research group

  • Drug Target Discovery

ISBN/ISSN/Other

  • ISSN: 1098-5514