The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Postcombustion CO2 Capture for Combined Cycles Utilizing Hot-Water Absorbent Regeneration

Author

Summary, in English

The partly hot-water driven CO2 capture plant offers a significant potential for improvement in performance when implemented in a combined-cycle power plant (CCPP). It is possible to achieve the same performance with a dual-pressure steam cycle as in a triple-pressure unit. Even a single-pressure plant can attain an efficiency competitive with that achievable with a triple-pressure plant without the hot-water reboiler. The underlying reasons are better heat utilization in the heat recovery unit and less steam extraction to the absorbent regenerating unit(s). In this paper, the design criteria for a combined cycle power plant utilizing hot-water absorbent regeneration will be examined and presented. The results show that the most suitable plant is one with two steam pressure levels. The low-pressure level should be much higher than in a conventional combined cycle in order to increase the amount of heat available in the economizer. The external heat required in the CO2 capture plant is partly supplied by the economizer, allowing temperature optimization in the unit. The maximum value of the low-pressure level is determined by the reboiler, as too great a temperature difference is unfavorable. This work evaluates the benefits of coupling the economizer and the reboiler in a specially designed CCPP. In the CO2 separation plant both monoethanolamine (MEA) and ammonia are evaluated as absorbents. Higher regeneration temperatures can be tolerated in ammonia-based plants than in MEA-based plants. When using a liquid heat carrier the reboiler temperature is not constant on the hot side, which results in greater temperature differences. The temperature difference can be greatly reduced by dividing the regeneration process into two units operating at different pressures. The possibility of extracting more energy from the economizer to replace part of the extracted steam increases the plant efficiency. The results show that very high efficiencies can be achieved without using multiple pressure-levels. [DOI: 10.1115/1.4004146]

Publishing year

2012

Language

English

Publication/Series

Journal of Engineering for Gas Turbines and Power

Volume

134

Issue

1

Document type

Journal article

Publisher

American Society Of Mechanical Engineers (ASME)

Topic

  • Energy Engineering

Status

Published

ISBN/ISSN/Other

  • ISSN: 1528-8919