The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

miR-145 suppress the androgen receptor in prostate cancer cells and correlates to prostate cancer prognosis.

Author

Summary, in English

Androgen signalling through the androgen receptor (AR) is essential for prostate cancer initiation, progression and transformation to the lethal castration-resistant state. The aim of this study was to characterize the mechanisms by which miR-145 deregulation contribute to prostate cancer progression. The miR-145 levels, measured by quantitative reverse transcription-polymerase chain reaction, were found to inversely correlate with occurrence of metastases, survival and androgen deprivation therapy response in a well-characterized prostate cancer cohort. Introduction of ectopic miR-145 in prostate cancer cells generated an inhibitory effect on the AR at both transcript and protein levels as well as its activity and downstream targets prostate-specific antigen (PSA), kallikrein-related peptidase 2 and TMPRSS2. The regulation was shown to be mediated by direct binding using Ago2-specific immunoprecipitation, but there was also indication of synergetic AR activation. These findings were verified in clinical prostate specimens by demonstrating inverse correlations between miR-145 and AR expression as well as serum PSA levels. In addition, miR-145 was found to regulate androgen-dependent cell growth in vitro. Our findings put forward novel possibilities of therapeutic intervention, as miR-145 potentially could decrease both the stem cells and the AR expressing bulk of the tumour and hence reduce the transformation to the deadly castration-resistant form of prostate cancer.

Publishing year

2015

Language

English

Pages

858-866

Publication/Series

Carcinogenesis

Volume

36

Issue

8

Document type

Journal article

Publisher

Oxford University Press

Topic

  • Cancer and Oncology

Status

Published

Research group

  • Medical Molecular Biology
  • Clinical Chemistry, Malmö
  • Urological cancer, Malmö

ISBN/ISSN/Other

  • ISSN: 0143-3334