The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Time-resolved NIR spectroscopy for quantitative analysis of intact pharmaceutical tablets

Author

  • Christoffer Abrahamsson
  • J Johansson
  • Stefan Andersson-Engels
  • Sune Svanberg
  • S Folestad

Summary, in English

Near-infrared (NIR) spectroscopy is a useful technique for quantitative measurements of intact tablets, but it suffers from limitations due to the fact that changes in the physical properties of a sample strongly affect the recorded spectrum. In this work, time-resolved transmission NIR spectroscopy was utilized to conduct quantitative measurements of intact tablets. The technique enables separation of the absorption properties of the sample from the scattering properties and can therefore handle changes of the physical parameters of the samples in a better way than conventional NIR transmission spectroscopy. The experiments were conducted using a pulsed Ti:sapphire laser coupled into a nonlinear photonic crystal fiber as light source. The light transmitted through the sample was measured by a time-resolving streak camera. A comparison of the results from the time-resolved technique with the results from conventional transmission NIR spectroscopy was made using tablets containing different concentrations of iron oxide and manufactured with different thicknesses. A PLS model made with data from the time-resolved technique predicted samples 5 times better than a PLS model made data from the conventional NIR transmission technique. Furthermore, an improvement to predict samples with physical properties outside those included in the calibration set was demonstrated.

Department/s

Publishing year

2005

Language

English

Pages

1055-1059

Publication/Series

Analytical Chemistry

Volume

77

Issue

4

Document type

Journal article

Publisher

The American Chemical Society (ACS)

Topic

  • Analytical Chemistry

Status

Published

ISBN/ISSN/Other

  • ISSN: 1520-6882