The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Large eddy simulation of turbulent combustion in a spark-assisted homogenous charge compression ignition engine

Author

Summary, in English

A large eddy simuation (LES) model is presented for simulation of spark-assisted homogeneous charge compression ignition combustion. The model is based on tabulated chemical kinetic rate for ignition and flame surface density for flame propagation, taking into account interaction between flame propagation introduced by the spark and auto-ignition due to charge compression. The model is used to simulate the combustion process in an experimental HCCI engine, with operation conditions ranging from spark-ignition controlled flame propagation to auto-ignition controlled HCCI combustion. The model is shown to be able to predict the combustion behavior observed in previous engine experiments. With low initial temperature, the SI flame mode prevails; with high initial temperature, the HCCI mode prevails. With moderate initial temperature, the SI flame and HCCI ignition interact more closely, which results in higher sensitivity to the initial temperature and turbulence conditions. This may be the reason of the observed high cyclic variation in the experiments.

Publishing year

2012

Language

English

Pages

1051-1065

Publication/Series

Combustion Science and Technology

Volume

184

Issue

7-8

Document type

Journal article

Publisher

Taylor & Francis

Topic

  • Fluid Mechanics and Acoustics

Keywords

  • Large eddy simulation
  • Modeling
  • Spark-assisted HCCI combustion

Status

Published

ISBN/ISSN/Other

  • ISSN: 1563-521X