The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Large homogeneous mono-/bi-layer graphene on 6H-SiC(0001) and buffer layer elimination

Author

Summary, in English

In this paper we discuss and review results of recent studies of epitaxial growth of graphene on silicon carbide. The presentation is focused on high quality, large and uniform layer graphene growth on the SiC(0 0 0 1) surface and the results of using different growth techniques and parameters are compared. This is an important subject because access to high-quality graphene sheets on a suitable substrate plays a crucial role for future electronics applications involving patterning. Different techniques used to characterize the graphene grown are summarized. We moreover show that atomic hydrogen exposures can convert a monolayer graphene sample on SiC(0 0 0 1) to bi-layer graphene without the carbon buffer layer. Thus, a new process to prepare large, homogeneous stable bi-layer graphene sheets on SiC(0 0 0 1) is presented. The process is shown to be reversible and should be very attractive for various applications, including hydrogen storage.

Department/s

Publishing year

2010

Language

English

Publication/Series

Journal of Physics D: Applied Physics

Volume

43

Issue

37

Document type

Journal article

Publisher

IOP Publishing

Topic

  • Natural Sciences
  • Physical Sciences

Status

Published

ISBN/ISSN/Other

  • ISSN: 1361-6463