The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Binding of von Willebrand factor by coagulase-negative staphylococci

Author

  • Dai-Qing Li
  • Fredrik Lundberg
  • Åsa Ljungh

Summary, in English

Coagulase-negative staphylococci (CNS) are the most common infectious micro-organisms isolated from prosthetic devices. To determine whether von Willebrand factor (vWF) acts as an adhesin in bacterial recognition, bacterial binding of recombinant vWF (rvWF) was studied. Eleven CNS strains, belonging to S. epidermidis, S. haemolyticus and S. hominis species, bound soluble rvWF, but to a lesser extent than S. aureus. S. epidermidis strain H2-W bound 125I-labelled rvWF in a dose-dependent manner. The binding could be inhibited by unlabelled rvWF and thrombospondin, but not by fibrinogen, vitronectin or the carbohydrates N-acetylgalactoseamine, d-galactose, d-glucose, and d-fucose. Pre-incubation of rvWF with type I collagen and Arg-Gly-Asp-Ser (RGDS) peptides did not inhibit binding, whereas pre-incubation of rvWF with heparin decreased binding significantly. The interaction between CNS and rvWF was sensitive to proteinase treatment of bacterial cells. CNS strains bound to immobilised rvWF an extent greater or equal to the positive control strain S. aureus Cowan I. rvWF binding structures from bacterial cell wall were detected by immunoblot. Cowan I strain had 140-, 90- and 38-kDa binding molecules. S. haemolyticus strain SM131 and S. epidermidis strain H2-W had two (120 and 60 kDa) and five (120, 90, 60, 52 and 38 kDa) binding molecules, respectively. Similar binding structures were formed when cell wall extracts from these strains were incubated with thrombospondin. These results indicate that specific ligand–receptor interaction between CNS and rvWF may contribute to bacterial adhesion and colonisation on biomaterial surfaces. Heparin-binding domains of rvWF might be the crucial regions for bacterial attachment. rvWF and thrombospondin may recognise similar molecules in staphylococcal cell wall extracts.

Publishing year

2000

Language

English

Pages

217-225

Publication/Series

Journal of Medical Microbiology

Volume

49

Issue

3

Document type

Journal article

Publisher

Lippincott Williams & Wilkins

Topic

  • Microbiology in the medical area

Status

Published

Research group

  • Diabetes - Islet Patophysiology

ISBN/ISSN/Other

  • ISSN: 0022-2615