The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Generation of trisomies in cancer cells by multipolar mitosis and incomplete cytokinesis.

Author

Summary, in English

One extra chromosome copy (i.e., trisomy) is the most common type of chromosome aberration in cancer cells. The mechanisms behind the generation of trisomies in tumor cells are largely unknown, although it has been suggested that dysfunction of the spindle assembly checkpoint (SAC) leads to an accumulation of trisomies through failure to correctly segregate sister chromatids in successive cell divisions. By using Wilms tumor as a model for cancers with trisomies, we now show that trisomic cells can form even in the presence of a functional SAC through tripolar cell divisions in which sister chromatid separation proceeds in a regular fashion, but cytokinesis failure nevertheless leads to an asymmetrical segregation of chromosomes into two daughter cells. A model for the generation of trisomies by such asymmetrical cell division accurately predicted several features of clones having extra chromosomes in vivo, including the ratio between trisomies and tetrasomies and the observation that different trisomies found in the same tumor occupy identical proportions of cells and colocalize in tumor tissue. Our findings provide an experimentally validated model explaining how multiple trisomies can occur in tumor cells that still maintain accurate sister chromatid separation at metaphase-anaphase transition and thereby physiologically satisfy the SAC.

Department/s

Publishing year

2010

Language

English

Pages

20489-20493

Publication/Series

Proceedings of the National Academy of Sciences

Volume

107

Issue

47

Document type

Journal article

Publisher

National Academy of Sciences

Topic

  • Pediatrics
  • Medical Genetics
  • Neurology
  • Cancer and Oncology

Status

Published

Research group

  • Pathways of cancer cell evolution

ISBN/ISSN/Other

  • ISSN: 1091-6490