The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

An Experimental Study of Liquid-Phase Heat Transfer in Multiport Minichannel Tubes

Author

Summary, in English

Heat transfer has been evaluated experimentally on the tube side of three different minichannel tubes, so-called multiport extruded (MPE) tubes, with different cross-section geometry. The objective was to find out which correlations, models, and relations should be used when predicting the performance of complete heat exchangers consisting of such tubes. The geometry of the tube channels or ducts was rectangular with different aspect ratios and one of the tubes was equipped with surface enlargements inside the channels. Evaluations were performed with four different secondary refrigerant liquids: water, propylene glycol, Hycool 20, and Temper-20. The laminar flow regime was the main focus of the investigations. Despite the shape of the minichannels, best agreement was found with a model presented by Gnielinski for laminar flow, developing temperature profile, and fully developed velocity profile in circular tubes with the constant wall temperature boundary condition.

Department/s

Publishing year

2009

Language

English

Pages

941-951

Publication/Series

Heat Transfer Engineering

Volume

30

Issue

12

Document type

Journal article

Publisher

Taylor & Francis

Topic

  • Energy Engineering

Status

Published

ISBN/ISSN/Other

  • ISSN: 1521-0537