The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

An experimental investigation of the port flow maldistribution in small and large plate package heat exchangers

Author

Summary, in English

An experimental investigation has been carried out to find the flow and the pressure difference across the port to channel in plate heat exchangers for a wide range of Reynolds number. 1000-17000. In the present study, low corrugation angle plates have been used for different number of channels, namely, 20 and 80. Water has been used as working fluid for both hot and cold fluids. The pressure probes are inserted through the plate gasket into both the inlet and exit ports of the channel. The pressure drop is recorded at the first, middle and last channels for each plate package of the heat exchanger. Also. the overall pressure drop has been measured for various flow rates. This overall pressure drop is a function of the flow rate, the cross-sectional area ratio of channel to port and number of channels per fluid. A simplified non-dimensional channel velocity has been suggested based on the channel pressure drop and the mean channel pressure drop of plate package, to measure the deviation of the particular channel flow rate from the mean channel flow rate. The results indicated that the flow maldistribution increases with increasing overall pressure drop in the plate heat exchangers. The experimental results are verified with M.K. Bassiouny and H. Martin's [Chemical Engineering Science 39(4) (1984) 693 and 701] analytical results. (c) 2006 Elsevier Ltd. All rights reserved.

Department/s

Publishing year

2006

Language

English

Pages

1919-1926

Publication/Series

Applied Thermal Engineering

Volume

26

Issue

16

Document type

Journal article

Publisher

Elsevier

Topic

  • Energy Engineering

Keywords

  • process
  • exchangers
  • plate heat
  • pressure drop
  • maldistribution
  • flow distribution

Status

Published

ISBN/ISSN/Other

  • ISSN: 1359-4311