The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Evaluation of parameters for monitoring an anaerobic co-digestion process

Author

Summary, in English

The system investigated in this study is an anaerobic digester at a municipal wastewater treatment plant operating on sludge from the wastewater treatment, co-digested with carbohydrate-rich food-processing waste. The digester is run below maximum capacity to prevent overload. Process monitoring at present is not extensive, even for the measurement of on-line gas production rate and off-line pH. Much could be gained if a better program for monitoring and control was developed, so that the full capacity of the system could be utilised without the risk of overload. The only limit presently set for correct process operation is that the pH should be above 6.8. In the present investigation, the pH was compared with alkalinity, gas production rate, gas composition and the concentration of volatile fatty acids (VFA). Changes in organic load were monitored in the full-scale anaerobic digester and in laboratory-scale models of the plant. Gas-phase parameters showed a slow response to changes in load. The VFA concentrations were superior for indicating overload of the microbial system, but alkalinity and pH also proved to be good monitoring parameters. The possibility of using pH as a process indicator is, however, strongly dependent on the buffering capacity. In this study, a minor change in the amount of carbohydrates in the substrate had drastic effects on the buffering effect of the system.

Publishing year

2000

Language

English

Pages

844-849

Publication/Series

Applied Microbiology and Biotechnology

Volume

54

Issue

6

Document type

Journal article

Publisher

Springer

Topic

  • Industrial Biotechnology

Status

Published

ISBN/ISSN/Other

  • ISSN: 1432-0614