The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Xylooligosaccharides from Hardwood and Cereal Xylans Produced by a Thermostable Xylanase as Carbon Sources for Lactobacillus brevis and Bifidobacterium adolescentis.

Author

Summary, in English

To compare xylans from forestry with agricultural origins, hardwood xylan (birch) and cereal arabinoxylan (rye) were hydrolyzed using two variants of the xylanase RmXyn10A, full-length enzyme and catalytic module only, from Rhodothermus marinus . Cultivations of four selected bacterial species, using the xylooligosaccharide (XOS) containing hydrolysates as carbon source, showed selective growth of Lactobacillus brevis DSMZ 1264 and Bifidobacterium adolescentis ATCC 15703. Both strains were confirmed to utilize the XOS fraction (DP 2-5), whereas putative arabinoxylooligosaccharides from the rye arabinoxylan hydrolysate were utilized by only B. adolescentis. Escherichia coli did not grow, despite its capability to grow on the monosaccharides arabinose and xylose. It was also shown that Pediococcus parvulus strain 2.6 utilized neither xylose nor XOS for growth. In summary, RmXyn10A or its catalytic module proved suitable for high-temperature hydrolysis of hardwood xylan and cereal arabinoxylan, producing XOS that could qualify as prebiotics for use in functional food products.

Publishing year

2013

Language

English

Pages

7333-7340

Publication/Series

Journal of Agricultural and Food Chemistry

Volume

61

Issue

30

Document type

Journal article

Publisher

The American Chemical Society (ACS)

Topic

  • Agricultural Science, Forestry and Fisheries

Status

Published

Project

  • ANTIDIABETIC FOOD CENTRE

ISBN/ISSN/Other

  • ISSN: 0021-8561