The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Pump-Flow-Probe X-ray Absorption Spectroscopy as a Tool for Studying Intermediate States of Photocatalytic Systems

Author

  • Grigory Smolentsev
  • Alexander Guda
  • Xiaoyi Zhang
  • Kristoffer Haldrup
  • Eugen S. Andreiadis
  • Murielle Chayarot-Kerlidou
  • Sophie Canton
  • Maarten Nachtegaal
  • Vincent Artero
  • Villy Sundström

Summary, in English

A new setup for pump-flow-probe X-ray absorption spectroscopy has been implemented at the SuperXAS beamline of the Swiss Light Source. It allows recording X-ray absorption spectra with a time resolution of tens of microseconds and high detection efficiency for samples with sub-millimolar concentrations. A continuous wave laser is used for the photoexcitation, with the distance between laser and X-ray beams and velocity of liquid flow determining the time delay, while the focusing of both beams and the flow speed profile define the time resolution. This method is compared with the alternative measurement technique that utilizes a 1 kHz repetition rate laser and multiple X-ray probe pulses. Such an experiment was performed at beamline 11ID-D of the Advanced Photon Source. Advantages, limitations, and potential for improvement of the pump-flow-probe setup are discussed by analyzing the photon statistics. Both methods with Co K-edge probing were applied to the investigation of a cobaloxime-based photocatalytic reaction. The interplay between optimizing for efficient photoexcitation and time resolution as well and the effect of sample degradation for these two setups are discussed.

Department/s

Publishing year

2013

Language

English

Pages

17367-17375

Publication/Series

Journal of Physical Chemistry C

Volume

117

Issue

34

Document type

Journal article

Publisher

The American Chemical Society (ACS)

Topic

  • Atom and Molecular Physics and Optics

Status

Published

ISBN/ISSN/Other

  • ISSN: 1932-7447