The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Neutrophil cannibalism--a back up when the macrophage clearance system is insufficient.

Author

Summary, in English

Background: During a lipopolysaccharide-induced lung inflammation, a massive accumulation of neutrophils occurs, which is normally cleared by macrophage phagocytosis following neutrophil apoptosis. However, in cases of extensive apoptosis the normal clearance system may fail, resulting in extensive neutrophil secondary necrosis. The aim of this study was to explore the hypothesis that neutrophils, in areas of the lung with extensive cellular infiltration, contribute to clearance by phagocytosing apoptotic cells and/or cell debris derived from secondary necrosis. Methods: Intranasal lipopolysaccharide administration was used to induce lung inflammation in mice. The animals were sacrificed at seven time points following administration, bronchoalveolar lavage was performed and tissue samples obtained. Electron microscopy and histochemistry was used to assess neutrophil phagocytosis. Results: Electron microscopic studies revealed that phagocytosing neutrophils was common, at 24 h after LPS administration almost 50% of the total number of neutrophils contained phagosomes, and the engulfed material was mainly derived from other neutrophils. Histochemistry on bronchoalvolar lavage cells further showed phagocytosing neutrophils to be frequently occurring. Conclusion: Neutrophils are previously known to phagocytose invading pathogens and harmful particles. However, this study demonstrates that neutrophils are also able to engulf apoptotic neutrophils or cell debris resulting from secondary necrosis of neutrophils. Neutrophils may thereby contribute to clearance and resolution of inflammation, thus acting as a back up system in situations when the macrophage clearance system is insufficient and/or overwhelmed.

Publishing year

2006

Language

English

Pages

143-143

Publication/Series

Respiratory Research

Volume

7

Issue

143

Document type

Journal article

Publisher

BioMed Central (BMC)

Topic

  • Respiratory Medicine and Allergy

Status

Published

ISBN/ISSN/Other

  • ISSN: 1465-9921