The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Improving the indoor air quality by using a surface emissions trap

Author

Summary, in English

The surface emissions trap, an adsorption cloth developed for reducing emissions of volatile organic compounds and particulate matter from surfaces while allowing evaporation of moisture, was used to improve the indoor air quality of a school building with elevated air concentrations of 2-ethyl-1-hexanol. An improvement of the perceived air quality was noticed a few days after the device had been attached on the PVC flooring. In parallel, decreased air concentrations of 2-ethyl-1-hexanol were found as well as a linear increase of the amounts of the same compound adsorbed on the installed cloth as observed up to 13 months after installation. Laboratory studies revealed that the performance of the device is not affected by differences in RH (35-85%), temperature (30-40 degrees C) or by accelerated aging simulating up to 10 years product lifetime, and, from a blinded exposure test, that the device efficiently blocks chemical odors. This study suggests that the device may represent a fast and efficient means of restoring the indoor air quality in a building e.g. after water damage leading to irritating and potentially harmful emissions from building material surfaces indoors. (C) 2014 Elsevier Ltd. All rights reserved.

Publishing year

2015

Language

English

Pages

376-381

Publication/Series

Atmospheric Environment

Volume

106

Document type

Journal article

Publisher

Elsevier

Topic

  • Meteorology and Atmospheric Sciences

Keywords

  • Indoor air purification
  • Volatile organic compounds
  • Building dampness
  • Formaldehyde
  • School environment

Status

Published

ISBN/ISSN/Other

  • ISSN: 1352-2310