The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Comparison and Analysis of Heat Transfer in Aluminum Foam Using Local Thermal Equilibrium or Nonequilibrium Model

Author

Summary, in English

Aluminum foams are favorable in modern thermal engineering applications because of the high thermal conductivity and the large specific surface area. The present study aims to investigate an application of porous aluminum foam by using the local thermal equilibrium (LTE) and local thermal nonequilibrium (LTNE) heat transfer models. Three-dimensional simulations of laminar flow (porous foam zone), turbulent flow (open zone), and heat transfer are performed by a computational fluid dynamics approach. In addition, the Forchheimer extended Darcy's law is employed to evaluate the fluid characteristics. By comparing and analyzing the average and local Nusselt numbers, it is found that the LTNE and LTE models can reach the same Nusselt numbers inside the aluminum foam when the air velocity is high, meaning that the aluminum foam is in a thermal equilibrium state. Besides, a high interfacial heat transfer coefficient is required for the aluminum foam to reach a thermal equilibrium state as the height of the aluminum foam is reduced. This study suggests that the LTE model can be applied to predict the thermal performance at high fluid velocities or for the case with a large height.

Department/s

Publishing year

2016

Language

English

Pages

314-322

Publication/Series

Heat Transfer Engineering

Volume

37

Issue

3-4

Document type

Journal article

Publisher

Taylor & Francis

Topic

  • Energy Systems

Status

Published

ISBN/ISSN/Other

  • ISSN: 1521-0537