The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Spike generation estimated from stationary spike trains in a variety of neurons in vivo

Author

Summary, in English

To any model of brain function, the variability of neuronal spike firing is a problem that needs to be taken into account. Whereas the synaptic integration can be described in terms of the original Hodgkin-Huxley (H-H) formulations of conductance-based electrical signaling, the transformation of the resulting membrane potential into patterns of spike output is subjected to stochasticity that may not be captured with standard single neuron H-H models. The dynamics of the spike output is dependent on the normal background synaptic noise present in vivo, but the neuronal spike firing variability in vivo is not well studied. In the present study, we made long-term whole cell patch clamp recordings of stationary spike firing states across a range of membrane potentials from a variety of subcortical neurons in the non-anesthetized, decerebrated state in vivo. Based on the data, we formulated a simple, phenomenological model of the properties of the spike generation in each neuron that accurately captured the stationary spike firing statistics across all membrane potentials. The model consists of a parametric relationship between the mean and standard deviation of the inter-spike intervals, where the parameter is linearly related to the injected current over the membrane. This enabled it to generate accurate approximations of spike firing also under inhomogeneous conditions with input that varies over time. The parameters describing the spike firing statistics for different neuron types overlapped extensively, suggesting that the spike generation had similar properties across neurons.

Publishing year

2014

Language

English

Publication/Series

Frontiers in Cellular Neuroscience

Volume

8

Document type

Journal article

Publisher

Frontiers Media S. A.

Topic

  • Neurosciences

Keywords

  • spike firing statistics
  • stochasticity
  • spinal interneurons
  • purkinje
  • cells
  • golgi cells
  • molecular layer interneurons
  • synaptic integration
  • whole cell recordings in vivo

Status

Published

Research group

  • Neural Basis of Sensorimotor Control

ISBN/ISSN/Other

  • ISSN: 1662-5102