The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

The structure and dynamics of ring chromosomes in human neoplastic and non-neoplastic cells

Author

Summary, in English

Acquired ring chromosomes have been found in most types of human neoplasia, with a frequency approaching 10% in malignant mesenchymal tumours. In this study, the composition and dynamics of ring chromosomes were analysed in eight cases of acute myelogenous leukaemia, 17 solid tumours, and five cases with constitutional rings. Chromosomal banding and fluorescence in situ hybridisation were performed to determine the content and the structural heterogeneity of the rings. Telomeric repeats were detected using peptide nucleic acid probes or primed in situ labelling, whereas centromeric activity was evaluated by detection of kinetochore proteins. Mitotic instability was assessed by the frequency of anaphase bridges. The results suggest that human ring chromosomes can be structurally and functionally divided into two categories. In the first of these, size variation is minimal and rearrangement at cell division is uncommon. The majority of such rings contain subtelomeric sequences. Constitutional ring chromosomes and most rings in leukaemias belong to this group, whereas only a few mesenchymal tumours exhibit rings of this type. The second category consists of rings with amplified sequences, primarily from chromosome 12, characteristically occurring in atypical lipomatous tumours and other subtypes of low or borderline malignant mesenchymal neoplasms. Variation in size and number is extensive, and breakage-fusion-bridge events occur at a high frequency. Abnormalities in pericentromeric sequences are common and, in some cases, kinetochores assemble in the absence of alphoid DNA. We conclude that it is not only the ring structure per se or the neoplastic nature of the host cell that determines ring instability, but probably also the functional role of the genes carried in the ring.

Publishing year

1999

Language

English

Pages

315-325

Publication/Series

Human Genetics

Volume

104

Issue

4

Document type

Journal article

Publisher

Springer

Topic

  • Medical Genetics

Status

Published

ISBN/ISSN/Other

  • ISSN: 1432-1203