The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Stretch-induced contractile differentiation of vascular smooth muscle: sensitivity to actin polymerization inhibitors.

Author

Summary, in English

Signaling mechanisms for stretch-dependent growth and differentiation of vascular smooth muscle were investigated in mechanically loaded rat portal veins in organ culture. Stretch-dependent protein synthesis was found to depend on endogenous release of angiotensin II. Autoradiography after [35S]methionine incorporation revealed stretch-dependent synthesis of several proteins, of which SM22 and actin were particularly prominent. Inhibition of RhoA activity by cell-permeant C3 toxin increased tissue mechanical compliance and reduced stretch-dependent extracellular signal-regulated kinase (ERK)1/2 activation, growth, and synthesis of actin and SM22, suggesting a role of the actin cytoskeleton. In contrast, inhibition of Rho-associated kinase by Y-27632 did not reduce ERK1/2 phosphorylation or actin and SM22 synthesis and did not affect tissue mechanical compliance but still inhibited overall growth. The actin polymerization inhibitors latrunculin B and cytochalasin D both inhibited growth and caused increased tissue compliance. Whereas latrunculin B concentration-dependently reduced actin and SM22 synthesis, cytochalasin D did so at low (10-8 M) but not at high (10-6 M) concentration. The results show that stretch stabilizes the contractile smooth muscle phenotype. Stretch-dependent differentiation marker expression requires an intact cytoskeleton for stretch sensing, control of protein expression via the level of unpolymerized G-actin, or both.

Publishing year

2003

Language

English

Pages

1387-1396

Publication/Series

American Journal of Physiology: Cell Physiology

Volume

284

Issue

6

Document type

Journal article

Publisher

American Physiological Society

Topic

  • Cell and Molecular Biology
  • Physiology

Status

Published

Research group

  • Cellular Biomechanics
  • Molecular Vascular Physiology
  • Vascular Physiology

ISBN/ISSN/Other

  • ISSN: 1522-1563