The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Time course of cerebellar morphological development in postnatal ferrets: Ontogenetic and comparative perspectives.

Author

Summary, in English

We provide the first systematic description of the morphological ontogenesis of the ferret cerebellum and compare its relative time-course to that of the rat cerebellum. Overall cerebellar size, foliation, and thickness of cortical layers were quantified and Purkinje cell morphology was characterized at 24 timepoints in ferrets from postnatal day (P)1 to P63. The ferret cerebellum was substantially larger than that of the rat and had a much longer developmental period. In ferrets, Purkinje cells were dispersed into a monolayer by P9, the formation of folia declined abruptly around P20, and the external granular layer peaked in thickness around P22 and disappeared by P56. Timepoints of corresponding relative developmental maturity of the quantified architectural features of rat and ferret cerebella were determined and their relationship was analyzed by linear regression. The time-conversion equation derived, describing the relationship between cerebellar morphogenesis in the two species, had a determination coefficient (r2) of 0.95. Conspicuously, the equation predicted with high accuracy the timing of structural changes in individual Purkinje cells in the ferret cerebellum. The conversion equation should be useful for precise quantitative translation of data between studies of ferret and rat cerebellum and for comparisons between development of motor and sensory structures and functions in ferrets. The degree of similarity in the time-courses of cerebellar development in two distantly related mammals makes explicit in quantitative terms how remarkably conserved the cerebellum is in phylogenesis. Therefore, the methodology should be applicable to precise quantitative conversions of cerebellar developmental time-courses also between other species.

Publishing year

2007

Language

English

Pages

916-930

Publication/Series

Journal of Comparative Neurology

Volume

501

Issue

6

Document type

Journal article

Publisher

John Wiley & Sons Inc.

Topic

  • Neurology

Keywords

  • Purkinje cell
  • EGL
  • rat
  • phylogenesis
  • motor development

Status

Published

Research group

  • Neurophysiology
  • Neuronano Research Center (NRC)

ISBN/ISSN/Other

  • ISSN: 1096-9861