The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Atomic Spectroscopy by Resonance Scattering

Author

Summary, in English

Resonance scattering techniques are very useful for high-resolution atomic spectroscopy. The applicability of these techniques has been much extended, particularly through the rapid development of tunable-laser technology. The use of a narrowband tunable laser, acting on a collimated atomic beam, gives a direct method enabling, for example, hyperfine structure and isotope shift studies. The intensity of lasers allows stepwise excitations to be performed, and with the two-photon absorption technique, Doppler-free measurements on thermal gases are also possible. By using pulsed lasers, time-resolved measurements yielding radiative life-times and structural information can be performed. The basic resonance scattering methods can be combined with radiofrequency and coherence techniques to yield a resolution, limited only by the uncertainty relation. Optical double resonance and level-crossing techniques, not requiring a narrow-band light source, have been extensively used. Several examples of the application of resonance scattering methods are given.

Department/s

Publishing year

1979

Language

English

Pages

215-222

Publication/Series

Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences

Volume

293

Issue

1402

Document type

Journal article

Publisher

Royal Society Publishing

Topic

  • Atom and Molecular Physics and Optics

Status

Published

ISBN/ISSN/Other

  • ISSN: 0080-4614