The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Determination of 5-hydroxythiabendazole in human urine as a biomarker of exposure to thiabendazole using LC/MS/MS.

Author

Summary, in English

Thiabendazole (TBZ) is widely used as a pre-planting and post-harvest agricultural fungicide and as an anthelminthic in humans and animals. TBZ is of toxicological concern, since adverse effects including nephrogenic, hepatogenic, teratogenic and neurological effects have been reported in mammals. Occupational exposure can occur among agricultural workers and the general public may be environmentally exposed to TBZ through the diet. The metabolite 5-hydroxythiabendazole (5-OH-TBZ) was chosen as biomarker of exposure to TBZ and a LC/MS/MS method for the quantification of 5-OH-TBZ in human urine was developed. The method includes enzyme hydrolysis, as 5-OH-TBZ is conjugated to glucuronide and sulphate in urine. Sample through put was optimised using 96-well plates for sample handling as well as for solid phase extraction (SPE). The method has excellent, within-run, between-run and between-batch precision between 4 and 9%. The limit of detection (LOD) of 0.05 and a limit of quantification (LOQ) of 0.13ng 5-OH-TBZ/mL urine enable detection in environmentally exposed populations. When applying the method in a general Swedish population, 52% had levels above LOD. The method was also applied in one oral and one dermal human experimental exposure study in two individuals. After oral exposure, the excretion of 5-OH-TBZ in urine was described by a two-compartment model and both the first rapid and the second slower elimination phase followed first-order kinetics, with estimated elimination half-life of 2h and 9-12h. The recoveries in urine were between 21 and 24% of the dose. Dermal exposure was described by a one compartment model and followed first order kinetics, with estimated elimination half-life of 9-18h. The recovery in urine was 1% of the administrated dose of TBZ. Although these studies are limited to two individuals, the data provide new basic information regarding the toxicokinetics of TBZ after oral and dermal exposure.

Publishing year

2014

Language

English

Pages

61-67

Publication/Series

Journal of Chromatography. B

Volume

973

Document type

Journal article

Publisher

Elsevier

Topic

  • Environmental Health and Occupational Health

Status

Published

ISBN/ISSN/Other

  • ISSN: 1873-376X