The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

A novel interaction between complement inhibitor C4b-binding protein and plasminogen that enhances plasminogen activation.

Author

  • Vaibhav Agarwal
  • Simone Talens
  • Alexander M Grandits
  • Anna Blom

Summary, in English

The complement, coagulation and fibrinolytic systems are crucial for the maintenance of tissue homeostasis. To date numerous interactions and cross talks have been identified between these cascades. In line with this, here we propose a novel, hitherto unknown interaction between the complement inhibitor C4b-binding protein (C4BP) and plasminogen of the fibrinolytic pathway. Binding of C4BP to S. pneumoniae is a known virulence mechanism of this pathogen and it was increased in the presence of plasminogen. Interestingly, the acute phase variant of C4BP lacking the β-chain and protein S binds plasminogen much stronger than the main isoform containing the β-chain and protein S. Indeed, the complement control protein (CCP) 8 domain of C4BP, which would otherwise be sterically hindered by the β-chain, primarily mediates this interaction. Moreover, the lysine-binding sites in plasminogen kringle domains facilitate the C4BP-plasminogen interaction. Furthermore, C4BP readily forms complexes with plasminogen in fluid phase and such complexes are present in human serum and plasma. Importantly, while the presence of plasminogen did not affect the factor I cofactor activity of C4BP, the activation of plasminogen by urokinase-type plasminogen activator to active plasmin was significantly augmented in the presence of C4BP. Taken together, our data demonstrate a novel interaction between two proteins of the complement and fibrinolytic system. Most complexes might be formed during the acute phase of inflammation and have an effect on the homeostasis at the site of injury or acute inflammation.

Publishing year

2015

Language

English

Pages

18333-18342

Publication/Series

Journal of Biological Chemistry

Volume

290

Issue

30

Document type

Journal article

Publisher

American Society for Biochemistry and Molecular Biology

Topic

  • Cell and Molecular Biology

Status

Published

Research group

  • Protein Chemistry, Malmö

ISBN/ISSN/Other

  • ISSN: 1083-351X