The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Altered expression and distribution of cathepsins in neuronopathic forms of Gaucher disease and in other sphingolipidoses

Author

  • Einat B. Vitner
  • Hani Dekel
  • Hila Zigdon
  • Tamar Shachar
  • Tamar Farfel-Becker
  • Raya Eilam
  • Stefan Karlsson
  • Anthony H. Futerman

Summary, in English

The neuronopathic forms of the human inherited metabolic disorder, Gaucher disease (GD), are characterized by severe neuronal loss, astrogliosis and microglial proliferation, but the cellular and molecular pathways causing these changes are not known. Recently, a mouse model of neuronopathic GD was generated in which glucocerebrosidase deficiency is limited to neural and glial progenitor cells. We now show significant changes in the levels and in the distribution of cathepsins in the brain of this mouse model. Cathepsin mRNA expression was significantly elevated by up to similar to 10-fold, with the time-course of the increase correlating with the progression of disease severity. Cathepsin activity and protein levels were also elevated. Significant changes in cathepsin D distribution in the brain were detected, with cathepsin D elevated in areas where neuronal loss, astrogliosis and microgliosis were observed, such as in layer V of the cerebral cortex, the lateral globus pallidus and in various nuclei in the thalamus, brain regions known to be affected in the disease. Cathepsin D elevation was greatest in microglia and also noticeable in astrocytes. The distribution of cathepsin D was altered in neurons in a manner consistent with its release from the lysosome to the cytosol. Remarkably, ibubrofen treatment significantly reduced cathepsin D mRNA levels in the cortex of Gaucher mice. Finally, cathepsin levels were also altered in mouse models of a number of other sphingolipidoses. Our findings suggest the involvement of cathepsins in the neuropathology of neuronal forms of GD and of other lysosomal storage diseases, and are consistent with a crucial role for reactive microglia in neuronal degeneration in these diseases.

Publishing year

2010

Language

English

Pages

3583-3590

Publication/Series

Human Molecular Genetics

Volume

19

Issue

18

Document type

Journal article

Publisher

Oxford University Press

Topic

  • Medical Genetics

Status

Published

ISBN/ISSN/Other

  • ISSN: 0964-6906