The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Communication: THz absorption spectrum of the CO2-H2O complex: Observation and assignment of intermolecular van der Waals vibrations.

Author

  • J Andersen
  • Jimmy Heimdal
  • D W Mahler
  • Bengt Nelander
  • R Wugt Larsen

Summary, in English

Terahertz absorption spectra have been recorded for the weakly bound CO2-H2O complex embedded in cryogenic neon matrices at 2.8 K. The three high-frequency van der Waals vibrational transitions associated with out-of-plane wagging, in-plane rocking, and torsional motion of the isotopic H2O subunit have been assigned and provide crucial observables for benchmark theoretical descriptions of this systems' flat intermolecular potential energy surface. A (semi)-empirical value for the zero-point energy of 273 ± 15 cm(-1) from the class of intermolecular van der Waals vibrations is proposed and the combination with high-level quantum chemical calculations provides a value of 726 ± 15 cm(-1) for the dissociation energy D0.

Department/s

Publishing year

2014

Language

English

Publication/Series

Journal of Chemical Physics

Volume

140

Issue

9

Document type

Journal article

Publisher

American Institute of Physics (AIP)

Topic

  • Natural Sciences
  • Physical Sciences

Status

Published

ISBN/ISSN/Other

  • ISSN: 0021-9606