The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Salinity-induced differences in soil microbial communities around the hypersaline Lake Urmia

Author

  • Mohsen Barin
  • Nasser Aliasgharzad
  • Pål Axel Olsson
  • MirHassan Rasouli-Sadaghiani

Summary, in English

Lake Urmia in north-western Iran is one of the largest hypersaline lakes in the world, and agricultural production in the surrounding area is limited by soil salinity. We investigated the effects of salinity on belowground microbial communities in soils collected from fields of cultivated onions (Allium cepa L.) and lucerne (Medicago sativa L.), and sites with the native halophyte samphire (Salicornia europaea L.). We tested the hypotheses that salinity reduces microbial biomass and changes the structure of the microbial community. The physical and chemical properties of soil samples were analysed, and phospholipid fatty acids were identified as signatures for various microbial groups. We found that the organic carbon (OC) content was the dominant determinant of microbial biomass. We also found linear relationships between OC and the biomass of various groups of organisms across the wide salinity gradient studied. Salinity, on the other hand, caused changes in the microbial fatty acid composition that indicated adaptation to stress and favoured saprotrophic fungi over bacteria, and Gram-negative bacteria over Gram-positive. Principal component analysis showed that salinity variables and microbial stress indices formed one group, and OC and microbial biomass another. The importance of OC for high microbial biomass in severely stressed soils indicates that OC amendment may be used to mitigate salt stress and as a method of managing saline soils.

Publishing year

2015

Language

English

Pages

494-504

Publication/Series

Soil Research

Volume

53

Issue

5

Document type

Journal article

Publisher

CSIRO Publishing

Topic

  • Soil Science

Keywords

  • microbial community structure PLFA
  • soil properties
  • soil microbial biomass
  • salinity

Status

Published

Research group

  • Plant Biology

ISBN/ISSN/Other

  • ISSN: 1838-675X