The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Biological Functions of Iduronic Acid in Chondroitin/Dermatan Sulfate.

Author

Summary, in English

The presence of iduronic acid in chondroitin/dermatan sulfate changes the properties of the polysaccharides, as it generates a more flexible chain with increased binding potentials. Iduronic acid in chondroitin/dermatan sulfate influences multiple cellular properties such as migration, proliferation, differentiation, angiogenesis and regulation of cytokine/growth factor activities. During pathological conditions such as wound healing, inflammation and cancer iduronic acid has diverse regulatory functions. Iduronic acid is formed by the two epimerases DS-epimerase 1 and DS-epimerase 2 which have different tissue distribution and properties. The role of IdoA in chondroitin/dermatan sulfate is underlined by the vast changes of connective tissue features in patients with a new type of Ehler-Danlos syndrome, adducted thumb-clubfoot syndrome. Future direction of research is to understand the roles of the two epimerases and their interplay with sulfotransferases involved in CS/DS biosynthesis. Further, a better definition of chondroitin/dermatan sulfate functions using different knock-out models is needed. In this review, we focus on the two enzymes responsible for iduronic acid formation and the role of iduronic acid in health and disease. © 2013 The Authors Journal compilation © 2013 FEBS.

Department/s

Publishing year

2013

Language

English

Pages

2431-2446

Publication/Series

The FEBS Journal

Volume

280

Issue

10

Document type

Journal article review

Publisher

Wiley-Blackwell

Topic

  • Biochemistry and Molecular Biology

Status

Published

Research group

  • Matrix Biology
  • Social Medicine and Health Policy
  • Åke Oldberg´s group

ISBN/ISSN/Other

  • ISSN: 1742-464X