The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Fish-mediated trait compensation in zooplankton

Author

Summary, in English

1. Environmental factors fluctuate spatially and temporally, and organisms that can alter phenotype in response to these changes may increase their fitness. Zooplankton are known to be able to induce body pigmentation in response to ultraviolet radiation (UVR) and to reduce the pigmentation when exposed to fish predators. Hence, reduced pigmentation because of the presence of fish could potentially lead to UVR damage, which calls for alternative protective mechanisms. 2. We exposed zooplankton to fish cues and UVR stress to assess whether body pigmentation and cellular antioxidants are flexible predation and UVR defences. 3. Zooplankton exposed to fish predator cues (no direct predation) reduced their pigmentation by c. 30% in 20 days. However, they were able to rapidly counteract negative UVR effects by increasing the activity of antioxidant defences such as glutathione S-transferase (GST). When exposed to UVR, the GST activity increased by c. 100% in zooplankton that had previously reduced their pigmentation because of fish cues. Transparency in the zooplankton did not lead to considerably higher UVR damage, here measured as inhibition of cholinesterase (ChE). 4. We conclude that zooplankton pigmentation and antioxidant enzymes are flexible UVR defence systems, which can be induced when needed. Zooplankton may employ antioxidant defences when pigmentation is reduced to counteract predation risk and thereby rapidly respond to detrimental effects of UVR exposure, that is, they can compensate one trait with another.

Publishing year

2012

Language

English

Pages

608-615

Publication/Series

Functional Ecology

Volume

26

Issue

3

Document type

Journal article

Publisher

Wiley-Blackwell

Topic

  • Ecology

Keywords

  • carotenoids
  • cholinesterase
  • enzymes
  • glutathione S-transferase
  • oxidative stress
  • phenotypic plasticity
  • trait compensation
  • ultraviolet
  • radiation
  • zooplankton

Status

Published

Research group

  • Aquatic Ecology

ISBN/ISSN/Other

  • ISSN: 1365-2435