The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Protein GRAB of streptococcus pyogenes regulates proteolysis at the bacterial surface by binding alpha2-macroglobulin

Author

Summary, in English

In the molecular interplay between pathogenic microorganisms and their host, proteolytic mechanisms are believed to play a crucial role. Here we find that the important human pathogen Streptococcus pyogenes (group A Streptococcus) expresses a surface protein with high affinity (Ka = 2.0 x 10(8) M-1) for alpha2-macroglobulin (alpha2M), the dominating proteinase inhibitor of human plasma. The immunoglobulin-binding protein G of group C and G streptococci also contains an alpha2M-binding domain and a gene encoding protein GRAB (protein G-related alpha2M-binding protein) was identified in the S. pyogenes Genome Sequencing data base. The grab gene is present in most S. pyogenes strains and is well conserved. Protein GRAB has typical features of a surface-attached protein of Gram-positive bacteria. It also contains a region homologous to parts of the alpha2M-binding domain of protein G and a variable number of a unique 28-amino acid-long repeat. Using Escherichia coli-produced protein GRAB and synthetic GRAB peptides, the alpha2M-binding region was mapped to the NH2-terminal part of protein GRAB, which is the region with homology to protein G. An isogenic S. pyogenes mutant lacking surface-associated protein GRAB showed no alpha2M binding activity and was attenuated in virulence when injected intraperitoneally in mice. Finally, alpha2M bound to the bacterial surface via protein GRAB was found to entrap and inhibit the activity of both S. pyogenes and host proteinases, thereby protecting important virulence determinants from proteolytic degradation. This regulation of proteolytic activity at the bacterial surface should affect the host-microbe relation during S. pyogenes infections.

Publishing year

1999

Language

English

Pages

15336-15344

Publication/Series

Journal of Biological Chemistry

Volume

274

Issue

22

Document type

Journal article

Publisher

American Society for Biochemistry and Molecular Biology

Topic

  • Infectious Medicine

Status

Published

ISBN/ISSN/Other

  • ISSN: 1083-351X