The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Effects of various protective clothing and thermal environments on heat strain of unacclimated men: The PHS (predicted heat strain) model revisited

Author

Summary, in English

Five protective garments were assessed on eight unacclimated male subjects at two WBGT temperatures: 19.0 and 24.5 °C. The thermophysiological responses and subjective sensations were reported. The PHS model (ISO7933) was used for predicting thermophysiological responses for each testing scenario. It was found that there were significant differences between clothing FIRE and other clothing on thermal sensation (p<0.05). Significant differences were found on skin humidity sensation between FIRE and L, HV or MIL (p<0.001). The RPE value in FIRE is significant different with L and HV (p<0.05). At 19.0 °C WBGT, the post-exercise mean skin temperatures increased by 0.59 and 1.29 °C in MIL and CLM. In contrast, mean skin temperatures in L, HV, MIL, CLM and FIRE at WBGT=24.5 oC increased by 1.7, 2.1, 2.1, 2.8 and 3.3 °C, respectively. The PHS model presented good performance on predicted mean skin temperatures in MIL and CLM at both two thermal environments. However, the skin temperature prediction with light clothing in high humidity (RH> 80%) was weak. For thick protective clothing, the prediction on rectal temperature was greatly conservative. It is thus concluded that the PHS model is inapplicable for high insulating clothing and measurements performed in high humidity environments.

Publishing year

2013

Language

English

Pages

266-274

Publication/Series

Industrial Health

Volume

51

Issue

3

Document type

Journal article

Publisher

National Institute of Occupational Safety and Health, Japan

Topic

  • Production Engineering, Human Work Science and Ergonomics

Keywords

  • heat stress
  • heat strain
  • WBGT
  • PHS model
  • thermophysiological response
  • protective clothing

Status

Published

Research group

  • Thermal Environment Laboratory

ISBN/ISSN/Other

  • ISSN: 1880-8026