The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Nontypeable Haemophilus influenzae activates human eosinophils through beta-glucan receptors

Author

Summary, in English

Eosinophils are a characteristic component of the inflammatory response seen in several diseases, including allergic asthma and chronic obstructive pulmonary disease. After activation, eosinophil-derived products may exert proinflammatory effects and cause considerable tissue damage. In the present study, we investigated innate interactions between the respiratory tract pathogen nontypeable Haemophilus influenzae (NTHi) and human eosinophils. Bacterial binding to eosinophils was dependent on (1-3)-beta-D-glucan receptors, as deduced from blocking experiments using the soluble glucan derivatives laminarin and scleroglucan. In addition, expression of the beta-glucan receptor dectin-1 was shown in eosinophils by reverse transcriptase-polymerase chain reaction. Activation of the beta-glucan receptors by bacteria elicited a time- and dose-dependent respiratory burst in eosinophils. NTHi caused increased expression of the proinflammatory chemokine interleukin-8 as measured by reverse transcriptase-polymerase chain reaction and enzyme-linked immunosorbent assay. Incubation of eosinophils in the presence of NTHi for 4.5 h revealed upregulation of 245 different genes as detected by microarray. Signal transduction-related transcripts were most strongly upregulated, followed by cytokine mRNAs. Our findings suggest that NTHi can induce an innate inflammatory response in eosinophils that is mainly mediated via beta-glucan receptors. This points to possible pathophysiologic mechanisms involving innate recognition of NTHi by eosinophils during infection of the airways, thus promoting inflammation in chronic pulmonary disease.

Publishing year

2003

Language

English

Pages

598-605

Publication/Series

American Journal of Respiratory Cell and Molecular Biology

Volume

29

Issue

5

Document type

Journal article

Publisher

American Thoracic Society

Topic

  • Cell and Molecular Biology

Status

Published

Research group

  • Clinical Microbiology, Malmö

ISBN/ISSN/Other

  • ISSN: 1535-4989