The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Multiple domains of MASP-2, an initiating complement protease, are required for interaction with its substrate C4

Author

Summary, in English

The complement system is fundamental to both innate and adaptive immunity and can be initiated via the classical, lectin or alternative pathways. Cleavage of C4 by MASP-2, the initiating protease of the lectin pathway, is a crucial event in the activation of this pathway, preceding the eventual formation of the C3 convertase (C4bC2a) complex on the pathogen surface. Interactions required for the cleavage of C4 by MASP-2 are likely to be facilitated by the initial binding of C4 to an exosite on the protease. We have shown that both proteolytically active and catalytically inactive CCP1-CCP2-serine protease (CCP1-CCP2-SP) forms bind C4 with similar affinity. Interestingly, proteins containing the CCP1-CCP2 domains or the SP domain alone bound C4 with much lower affinity than the CCP1-CCP2-SP protein, suggesting that the CCP domains cooperate positively with the active site to mediate efficient binding and cleavage of C4. In addition, mutation of residue K342 to alanine in the CCP1 domain abolished binding to both C4 and C4b in its CCP1-CCP2 form, suggesting a key electrostatic role for this amino acid. The presented data indicates that all of the domains are required in order to mediate high affinity interaction with C4. (C) 2011 Elsevier Ltd. All rights reserved.

Publishing year

2012

Language

English

Pages

593-600

Publication/Series

Molecular Immunology

Volume

49

Issue

4

Document type

Journal article

Publisher

Pergamon Press Ltd.

Topic

  • Immunology in the medical area

Keywords

  • Protease
  • Mannan-binding lectin-associated serine protease-2
  • C4
  • Exosite

Status

Published

Research group

  • Protein Chemistry, Malmö

ISBN/ISSN/Other

  • ISSN: 1872-9142