The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Migration of human granulocytes in filters: effects of gravity and movable gradients of f-MLP

Author

Summary, in English

The Boyden chamber technique for chemotaxis uses a mesh filter that constitutes a matrix for cell locomotion and, at the same time, creates a local restriction for convective fluid movements that allows the establishment of a diffusive concentration gradient of chemotactic substance in the filter. In the present study, the Boyden chamber was modified by the introduction of a filter sandwich that allowed cell migration both upwards and downwards and by the use of a fluid density gradient controlling cell buoyancy and mechanically supporting a movable chemotactic gradient. This method was used to study chemotaxis and random migration of human granulocytes under the influence of gravitational forces and movable gradients of f-MLP. The results show that gravity affected cell motion significantly during random migration but not during chemotaxis. The rate of chemotactic migration was dependent on the steepness of the spatio-temporal f-MLP gradients. A stationary spatial gradient produced less migration than a gradient that was slowly moved through the filter sandwich in a direction opposite to that of the cell migration. The presence of f-MLP at constant concentration caused a minor, statistically insignificant, increase of the rate of random migration.

Publishing year

1994

Language

English

Pages

617-630

Publication/Series

Biorheology

Volume

31

Issue

6

Document type

Journal article

Publisher

IOS Press

Topic

  • Medical Biotechnology

Status

Published

ISBN/ISSN/Other

  • ISSN: 0006-355X