The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Perturbed Learning Automata in Potential Games

Author

Summary, in English

This paper presents a reinforcement learning algorithm and provides conditions for global convergence to Nash equilibria. For several reinforcement learning schemes, including the ones proposed here, excluding convergence to action profiles which are not Nash equilibria may not be trivial, unless the step-size sequence is appropriately tailored to the specifics of the game. In this paper, we sidestep these issues by introducing a new class of reinforcement learning schemes where the strategy of each agent is perturbed by a state-dependent perturbation function. Contrary to prior work on equilibrium selection in games, where perturbation functions are globally state dependent, the perturbation function here is assumed to be local, i.e., it only depends on the strategy of each agent. We provide conditions under which the strategies of the agents will converge to an arbitrarily small neighborhood of the set of Nash equilibria almost surely. We further specialize the results to a class of potential games.

Topic

  • Control Engineering

Conference name

50th IEEE Conference on Decision and Control and European Control Conference, 2011

Conference date

2011-12-12 - 2011-12-15

Conference place

Orlando, Florida, United States

Status

Inpress

Research group

  • LCCC