The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

An okadaic acid-sensitive protein phosphatase counteracts protein kinase C-induced phosphorylation in SH-SY5Y cells

Author

Summary, in English

Protein phosphorylation and subsequent dephosphorylation was studied in digitonin-permeabilized neuroblastoma SH-SY5Y cells by measuring the incorporation of [32P]phosphate into myelin basic protein (MBP). 1,2-Dioctanoyl-sn-glycerol (DOG) and calcium synergistically induced phosphorylation of MBP, which was inhibited by the protein kinase C (PKC) pseudosubstrate peptide (PKC19-36). The phosphorylation increased for 10 min when a net dephosphorylation started to appear. The dephosphorylation was inhibited by okadaic acid. Regardless of calcium concentration, the presence of DOG was necessary for significant effects of okadaic acid on MBP phosphorylation. H7 and staurosporine dose-dependently inhibited the phosphorylation of MBP, induced by DOG and calcium in the presence of okadaic acid. Different PKC pseudosubstrate peptides were applied and all showed an inhibitory effect on the phosphorylation of MBP under these conditions. These results demonstrate the presence, in SH-SY5Y cells, of a protein phosphatase, possibly protein phosphatase 2A, with a high basal activity that counteracts PKC-induced phosphorylation.

Publishing year

1993

Language

English

Pages

305-313

Publication/Series

Cellular Signalling

Volume

5

Issue

3

Document type

Journal article

Publisher

Elsevier

Topic

  • Microbiology

Keywords

  • Neuroblastoma SH-SY5Y cells
  • protein kinase C
  • protein phosphatase
  • okadaic acid

Status

Published

Research group

  • Clinical Chemistry, Malmö

ISBN/ISSN/Other

  • ISSN: 1873-3913