The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Modeling of an anode supported Solid Oxide Fuel Cell focusing on Thermal Stresses

Author

Summary, in English

A mechanical failure of a single component is sufficient to cause a solid oxide fuel cell (SOFC) breakdown. As an unfavorable issue for interfering the stable operation of SOFCs, thermal stress stemming from temperature gradient and mechanical mismatch can result in crack damage. Therefore, it is strongly significant to clarify the relationship of mechanical properties of the cell materials with distribution of the stress by taking into account the electrochemical reactions. A complete three-dimensional model for a planar anode-supported SOFC has been proposed and established in this study, which includes governing equations for momentum, gas-phase species, heat, electron and ion transport. The thermal gradients caused by the electrochemical reactions and heat transport processes of the counterflow leading to a maximum thermal stress is slightly larger than that is induced by the coflow. The influence of mechanical mismatch is analyzed and the results indicate that the strength of stress at two sides of a cell tends to be enlarged under fixed constraint conditions. Furthermore, the functional buffer layers can affect the stress between different components and inhibit the extent of degradation. This investigation is expected to offer a path to improve the matches of SOFC components and optimize the stack design.

Department/s

Publishing year

2016

Language

English

Pages

14927-14940

Publication/Series

International Journal of Hydrogen Energy

Volume

41

Issue

33

Document type

Journal article

Publisher

Elsevier

Topic

  • Energy Engineering

Status

Published

ISBN/ISSN/Other

  • ISSN: 1879-3487