The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Structures and stabilities of Cd(II) and Cd(II)-phthalate complexes at the goethite/water interface

Author

Summary, in English

The complexation of Cd(II) and Cd(II)-phthalate at the goethite/water interface were investigated by EXAFS and IR spectroscopy, by batch adsorption experiments and by potentiometric titrations at 298.15 K. The EXAFS spectra showed Cd(IT) to form only inner-sphere corner-sharing complexes with the goethite surface sites in the presence and absence of phthalate. EXAFS spectra also showed the presence of Cd(II)-chloride complexes in 0.1 mol/L NaCl. IR spectra also showed phthalate to form (1) an inner-sphere complex with adsorbed corner-sharing Cd(II) surface complexes in the pH 3.5 to 9.5 and (2) an outer-sphere complex with the same type of corner-sharing Cd(II) complex however at pH > 6, in addition to the inner- and outer-sphere complexes of phthalate reported in a previous study. The potentiometric fitration and the batch adsorption data were used to constrain the formation constants of the different Cd(II)-phthalate surface complexes on the dominant {110} and the {001} planes of the goethite. The models were carried out with the Charge Distribution Multisite Complexation model coupled to the Three Plane Model and can predict the molecular-scale speciation of cadmium and phthalate in the presence of goethite. Cd(II) adsorption models calibrated on a 90 m(2)/g goethite also could accurately predict experimental data for a 37 m(2)/g goethite of slightly different basic charging properties. Copyright (C) 2005 Elsevier Ltd.

Publishing year

2005

Language

English

Pages

3219-3235

Publication/Series

Geochimica et Cosmochimica Acta

Volume

69

Document type

Journal article

Publisher

Elsevier

Topic

  • Earth and Related Environmental Sciences

Status

Published

ISBN/ISSN/Other

  • ISSN: 0016-7037