The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Constructal design and thermal analysis of microchannel heat sinks with multistage bifurcations in single-phase liquid flow

Author

Summary, in English

Based on constructal theory, five different cases with multistage bifurcations are designed as well as one case without bifurcations, and the corresponding laminar fluid flow and thermal performance have been investigated numerically. All laminar fluid flow and heat transfer results are obtained using computation fluid dynamics, and a uniform wall heat flux thermal boundary condition is applied all heated surfaces. The inlet velocity ranges from 0.66 m/s to 1.6 m/s with the corresponding Reynolds number ranging from 230 to 560. The pressure, velocity, temperature distributions and averaged Nusselt number are presented. The overall thermal resistances versus inlet Reynolds number or pumping power are evaluated and compared for the six microchannel heat sinks. Numerical results show that the thermal performance of the microchannel heat sink with multistage bifurcation flow is better than that of the corresponding straight microchannel heat sink. The heat sink with a long bifurcation length in the first stage (Case 1A) is superior. The usage of multistage bifurcated plates in microchannel heat sink can reduce the overall thermal resistance and make the temperature of the heated surface more uniform (Case 3). It is suggested that proper design of the multistage bifurcations could be employed to improve the overall thermal performance of microchannel heat sinks and the maximum number of stages of bifurcations is recommended to be two. The study complements and extends previous works. (C) 2013 Elsevier Ltd. All rights reserved.

Department/s

Publishing year

2014

Language

English

Pages

791-802

Publication/Series

Applied Thermal Engineering

Volume

62

Issue

2

Document type

Journal article

Publisher

Elsevier

Topic

  • Energy Engineering

Keywords

  • Microchannel heat sink
  • Multistage bifurcations
  • Thermal performance
  • Laminar flow
  • Numerical simulation

Status

Published

ISBN/ISSN/Other

  • ISSN: 1359-4311