The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Clinical system for non-invasive in situ monitoring of gases in the human paranasal sinuses

Author

Summary, in English

We present a portable system for non-invasive, simultaneous sensing of molecular oxygen (O-2) and water vapor (H2O) in the human paranasal cavities. The system is based on high-resolution tunable diode laser spectroscopy (TDLAS) and digital wavelength modulation spectroscopy (dWMS). Since optical interference and non-ideal tuning of the diode lasers render signal processing complex, we focus on Fourier analysis of dWMS signals and procedures for removal of background signals. Clinical data are presented, and exhibit a significant improvement in signal-to-noise with respect to earlier work. The in situ detection limit, in terms of absorption fraction, is about 5 x 10(-5) for oxygen and 5 x 10(-4) for water vapor, but varies between patients due to differences in light attenuation. In addition, we discuss the use of water vapor as a reference in quantification of in situ oxygen concentration in detail. In particular, light propagation aspects are investigated by employing photon time-of-flight spectroscopy. (C) 2009 Optical Society of America

Publishing year

2009

Language

English

Pages

10849-10863

Publication/Series

Optics Express

Volume

17

Issue

13

Document type

Journal article

Publisher

Optical Society of America

Topic

  • Atom and Molecular Physics and Optics

Status

Published

Research group

  • Biophotonics

ISBN/ISSN/Other

  • ISSN: 1094-4087