The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Contractile and cytoskeletal proteins in smooth muscle during hypertrophy and its reversal

Author

Summary, in English

Hypertrophy of rat urinary bladder smooth muscle was induced by partial urethral obstruction. Bladder weight increased from 70 to 240 mg after 10 days and to 700 mg after 7 wk. Removal of the obstruction after 10 days caused a regression of bladder weight to 130 mg. The relative volume of smooth muscle in the bladder wall increased during hypertrophy. The concentration of myosin in the smooth muscle cells decreased in 10-day hypertrophied bladders, whereas the concentration of actin was unchanged. The actin-myosin ratio was 2.3 in controls, 3.3 in 10-day obstructed bladders, and 2.9 in 7-wk obstructed bladders. After removal of obstruction, the ratio was normalized. Two isoforms of myosin heavy chains were identified (SM1 and SM2). The relative amount of SM2 decreased during hypertrophy. The relative proportion of actin isoforms (alpha, beta, and gamma) was altered toward more gamma and less alpha. These changes were reversible upon removal of the obstruction. Desmin was the dominating intermediate filament protein. The concentration of desmin and filamin increased in the hypertrophic bladders. The increased desmin-actin and filamin-actin ratios in obstructed bladders were normalized after removal of the obstruction. The results suggest that the turnover of contractile and cytoskeletal proteins is fast and can be regulated in response to changes in the functional demands in smooth muscle.

Publishing year

1991

Language

English

Pages

1085-1093

Publication/Series

American Journal of Physiology: Cell Physiology

Volume

260

Issue

5

Document type

Journal article

Publisher

American Physiological Society

Topic

  • Medicinal Chemistry
  • Pharmacology and Toxicology
  • Physiology
  • Urology and Nephrology

Status

Published

Research group

  • Vascular Physiology
  • Urology

ISBN/ISSN/Other

  • ISSN: 1522-1563