The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Swelling kinetics of poly(N-isopropylacrylamide) gel

Author

Summary, in English

In many gel applications the swelling and shrinking kinetics are very important, e.g. in controlled/slow release, where the kinetics determine the rate of out-diffusion of the active component, and in gel extraction where the gel is swollen and shrunk several times. In this study swelling kinetics of poly(N-isopropylacrylamide) gel (NiPAAm gel) was determined by monitoring the swelling process using a stereo microscope and a video camera. The swelling of spherical gel bodies could conveniently be studied after a temperature change. The results obtained were treated according to the approach of Tanaka and Fillmore, in which the swelling and shrinking of a gel is described as a motion of the gel network according to the diffusion equation. This was shown to be valid when the temperature changes are kept below the critical point of the gel. However, the model fails to describe the shrinking process when passing from below to above the critical temperature. The collective diffusion coefficient (D), defined as the osmotic bulk modulus divided by the friction factor, was determined by fitting to the experimental data. D was found to increase with temperature according to the Wilke-Chang relation D=2.0.10(-11)+7.6.10(-17).T/mu. The results were used to simulate the swelling/shrinking process. The simulations show the importance of having sufficiently small gel bodies to achieve a short swelling time. (C) 1998 Elsevier Science B.V.

Publishing year

1998

Language

English

Pages

273-281

Publication/Series

Journal of Controlled Release

Volume

50

Issue

1-3

Document type

Journal article

Publisher

Elsevier

Topic

  • Chemical Engineering

Keywords

  • gels
  • kinetics of swelling
  • N-isopropylacrylamide
  • simulation

Status

Published

ISBN/ISSN/Other

  • ISSN: 1873-4995