The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Plasmodium falciparum is able to invade erythrocytes through a trypsin-resistant pathway independent of glycophorin B

Author

  • Deepak Gaur
  • Jill Storry
  • Marion E Reid
  • John W Barnwell
  • Louis H Miller

Summary, in English

Plasmodium falciparum invades erythrocytes through multiple ligand-receptor interactions, with redundancies in each pathway. One such alternate pathway is the trypsin-resistant pathway that enables P. falciparum to invade trypsin-treated erythrocytes. Previous studies have shown that this trypsin-resistant pathway is dependent on glycophorin B, as P. falciparum strains invade trypsin-digested glycophorin B-deficient erythrocytes at a highly reduced efficiency. Furthermore, in a recent study, the P. falciparum 7G8 strain did not invade glycophorin B-deficient erythrocytes, a finding that was not confirmed in the present study. To analyze the degree of dependence on glycophorin B for invasion by P. falciparum through the trypsin-resistant pathway, we have studied the invasion phenotypes of five parasite strains, 3D7, HB3, Dd2, 7G8, and Indochina I, on trypsin-treated normal and glycophorin B-deficient erythrocytes. Invasion was variably reduced in glycophorin B-deficient erythrocytes. Four strains, 3D7, HB3, Dd2, and Indochina I, invaded trypsin-treated erythrocytes, while invasion by the 7G8 strain was reduced by 90%. Among the four strains, invasion by 3D7, HB3, and Dd2 of trypsin-digested glycophorin B-deficient erythrocytes was further reduced. However, Indochina I invaded trypsin-digested glycophorin B-deficient erythrocytes at the same efficiency as its invasion of trypsin-digested normal erythrocytes. This strongly suggests that the Indochina I strain of P. falciparum is not dependent on glycophorin B to invade through a trypsin-resistant pathway as are the strains 3D7, HB3, and Dd2. Thus, P. falciparum is able to invade erythrocytes through a glycophorin B-independent, trypsin-resistant pathway.

Publishing year

2003

Language

English

Pages

6742-6746

Publication/Series

Infection and Immunity

Volume

71

Issue

12

Document type

Journal article

Publisher

American Society for Microbiology

Topic

  • Hematology

Status

Published

ISBN/ISSN/Other

  • ISSN: 1098-5522