The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Effects of thermal annealing on the viscoelastic properties and morphology of bimodal hard/soft latex blends

Author

  • Didier Colombini
  • Helen Hassander
  • Ola Karlsson
  • Frans Maurer

Summary, in English

The effects of thermal annealing on the viscoelastic properties and morphology of films prepared from bimodal latex blends containing equal weight fractions of soft and hard latex particles with controlled sizes were investigated. The thermal and viscoelastic properties of as-dried and annealed samples were investigated with differential scanning calorimetry and dynamic mechanical analysis (DMA). Throughout the thermal annealing, the latex blend morphologies were also followed with atomic force microscopy and transmission electron microscopy (TEM). A particulate morphology, consisting of hard particles evenly dispersed in a continuous soft phase, was observed in the TEM micrographs of the as-dried latex blends and resulted in an enhancement of the mechanical film properties at temperatures between the a relaxations of the soft and hard phases in the DMA thermograms. As soon as the thermal annealing involved temperatures higher than the glass-transition temperature of the hard phase, the hard particles progressively lost their initial spherical shape and formed a more or less continuous phase in the latex blends. This induced coalescence of the hard particles was confirmed by the association of the experimental viscoelastic data with theoretical predictions, based on self-consistent mechanical models, which were performed by the consideration of either a particulate or cocontinuous morphology for the bimodal latex blends. (c) 2005 Wiley Periodicals, Inc.

Publishing year

2005

Language

English

Pages

2289-2306

Publication/Series

Journal of Polymer Science. Part B, Polymer Physics

Volume

43

Issue

17

Document type

Journal article

Publisher

John Wiley & Sons Inc.

Topic

  • Chemical Sciences

Status

Published

ISBN/ISSN/Other

  • ISSN: 0887-6266