The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Two models to simulate rate-dependent domain switching effects - application to ferroelastic polycrystalline ceramics

Author

Summary, in English

The aim of this paper is to study rate-dependent switching in ferroelastic materials. More specifically, a micro-mechanically motivated model is embedded into an iterative three-dimensional and electromechanically coupled finite element framework. An established energy-based criterion serves for the initiation of domain switching processes as based on reduction in (local) Gibbs free energy. Subsequent nucleation and propagation of domain walls is captured via a linear kinetics theory with rate-dependent effects being incorporated in terms of a deformation-dependent limit-time-parameter. With this basic model in hand, two different switching formulations are elaborated in this work: on the one hand, a straightforward volume-fraction-ansatz is applied with the volume-fraction-value depending on the limit-time-parameter; on the other hand, a reorientation-transformation-formulation is proposed, whereby the orientation tensor itself is assumed to depend on the limit-time-parameter. Macroscopic behaviour such as stress versus strains curves or stress versus electrical displacements graphs are obtained by applying straightforward volume-averaging-techniques to the three-dimensional finite-element-based simulation results which provides important insights into the rate-dependent response of the investigated ferroelastic materials.

Department/s

Publishing year

2008

Language

English

Publication/Series

Smart Materials and Structures

Volume

17

Document type

Journal article

Publisher

IOP Publishing

Topic

  • Mechanical Engineering

Status

Published

ISBN/ISSN/Other

  • ISSN: 0964-1726